آلومینیم عنصری شیمیای در گروه بورون با عدد اتمی ۱۳ و نماد Al است. این عنصر یک نرم، سفید و چکشپذیر با چگالی پایین است که سومین عنصر فراوان و فراوانترین فلز در است. آلومینیوم خالص به دلیل واکنشپذیری بسیار بالای خود بسیار به ندرت به طور طبیعی یافت میشود به صورت ناخالص در سنگهای معدنی مختلفی وجود دارد. بیشتر آلومینیوم دنیا از سنگ به دست میآید.
نامگذاری
آلیاژهای آلومینیوم به دلیل داشتن خواص منحصر به فردی مانند نسبت استحکام به وزن بالا، جوش پذیری خوب، شکل پذیری عالی و مقاومت به خوردگی نسبتاً خوب، به گونه گسترده در انواع سازهها، صنایع هوایی و دریایی، خطوط انتقال برق، حمل و نقل و… استفاده میشوند. با اضافه کردن عناصری مانند مس، روی و سیلیسیوم به آلومینیوم میتوان به خواص مکانیکی بهینه رسید. در برخی آلیاژهای آلومینیوم لازم است عملیات ترمومکانیکی انجام شود. در این عملیات که بیشتر ویژه آلیاژهای سری ۲۰۰۰ ،۷۰۰۰ و ۶۰۰۰ است، ذرات در مرزدانهها رسوب کرده و در نتیجه نواحی اطراف مرزدانهها از عنصر آلیاژی تهی میشوند و این خود میتواند شروعی برای خوردگی موضعی بویژه خوردگی حفرهای و بین دانهای باشد؛ بنابراین، آلیاژهای آلومینیوم با استحکام بالا مانند ۲۰۲۴ ،۷۰۷۵ و ۶۰۶۱ که در صنایع گوناگون کاربرد فراوانی دارند، حساسیت زیادی به خوردگیهای موضعی بویژه حفرهای و بیندانهای دارند. این نوع خوردگیها میتوانند شروعی برای انواع خوردگی مثل پوستهای شدن (Exfoliation)، خوردگی تنشی SCC و ترکهای خستگی در آلیاژهای آلومینیوم باشند. فرایندهایی مانند عملیات حرارتی محلول جامد، کوئنچ و رسوبسختی، اثر قابل ملاحظهای بر ترکیب شیمیایی موضعی آلیاژهای با استحکام بالا و قابل عملیات دارد.
به طور کلی هر نوع عملیاتی که باعث از بین رفتن یکنواختی در میکروساختار آلیاژ شود مقاومت به خوردگی را کاهش میدهد بررسی خوردگی موضعی آلیاژهای آلومینیوم مورد نظر در محیطهای هالیدی از اهمیت بالایی برخوردار است. محیطهای هالیدی شامل یونهای کلرید و یا برومید میتوانند لایه رویین روی سطح آلومینیوم را بشکنند و سبب ایجاد خسارت روی سطح شوند. از سوی دیگر، در این آلیاژها استحکام با انجام عملیات حرارتی و با رسوب ترکیبات شامل مس، روِی و منیزیوم افزایش مییابد. انحلال این رسوبات در دماهای بالا (حدود ۴۸۰ درجه سانتی گراد) محلول فوق اشباع از این عناصر را بوجود میآورد که تحت عملیات حرارتی، ترکیبات ریز شامل این عناصر رسوب میکنند. رشد همین ترکیبات، سبب ایجاد ساختاری ناهمگون شده که افزون بر کاهش استحکام، در رشد لایه پسیو تشکیل شده چه در هوا و چه در محیطهای آبی، اخلال به وجود میآورند.
از این رو، محل شروع حفرهدارشدن را میتوان به نقاط ضعیف در لایه پسیو مرتبط دانست. برخلاف فلزات دیگر که خوردگی باعث کاهش کلی ضخامت میشود در آلومینیوم خوردگی تمایل دارد به صورت موضعی در سراسر سطح، حفرات زیادی تولید کند و در کل بخش وسیعی از سطح دست نخورده باقی میماند. تا کنون پژوهشهای زیادی در رابطه با خوردگی موضعی آلیاژهای آلومینیوم در محلولهای کلریدی انجام گرفته است. برای مثال، در سال ۲۰۰۴ سینیاوسکی و کالینین به بررسی خوردگی آلیاژهای آلومینیوم در آب دریا پرداختهاند، ولی در مجموع کمتر به موضوع خوردگی اتمسفری پرداخته شده است. بتازگی کوزنیکا در سال ۲۰۰۹ در مورد آلیاژ ۲۰۱۷، لی و همکارانش روی آلیاژ ۲۰۱۲ و نایت و همکارانش در سال ۲۰۱۱ در مورد آلیاژهای ۲۰۲۴ و ۷۰۵۰مقالاتی در این زمینه به چاپ رساندهاند.
خوردگی اتمسفری نوع خاصی از خوردگی بوده که به علت تشکیل یک لایه الکترولیت روی سطح که بیشتر فیلم نازکی از رطوبت است، بوجود میآید. ضخامت این لایه از ۱۰۰ میکرومتر تجاوز نمیکند و میتوان فرض کرد این لایه همیشه اشباع از اکسیژن است. وقتی فلز در آب یا محلول نمکی مانند کلرید سدیم غوطه ور است بدلیل کاهش نفوذ اکسیژن در نواحی کاتدی نرخ خوردگی کاهش مییابد، ولی در خوردگی اتمسفری به دلیل اینکه گاهی لایه الکترولیت روی سطح خشک میشود یک شرایط تناوب خشک و تر بوجود میآید که باعث تشدید خوردگی نیز میشود. یون کلر نقش اصلی در خوردگی را ایفا میکند. مقدار خورندگی محیط به شدت تابع غلظت یون کلر در اتمسفر است. یون کلر باعث تخریب و سوراخ شدن لایه اکسیدی محافظ میشود. بر اساس پژوهشهای بروکشیتیس و کلارک وجود این یون در اتمسفرهای دریایی باعث میشود که نرخ خوردگی آلومینیوم حدود ۲۲ برابر بیشتر از نرخ خوردگی اتمسفرهای روستایی شود.
تاریخچه کشف آلومینیوم
«فردریک وهلر» بطور کلی به آلومینیوم خالص اعتقاد داشت. اما این فلز دو سال پیشتر بهوسیله «هانس کریستین ارستد» شیمیدان و فیزیکدان دانمارکی بدست آمد. در روم و این فلز را بهعنوان ثابت کننده رنگ در رنگرزی و نیز بهعنوان بند آورنده خون در زخمها بکار میبردند و هنوز هم بهعنوان داروی بند آورنده خون مورد استفادهاست. در سال ۱۷۶۱، «گویتون دموروو» پیشنهاد کرد تا alum را آلومین (alumin) بنامند.
پیدایش و منابع
اگر چه Al، یک عنصر فراوان در پوسته زمین است(۱۸٪)، این عنصر در حالت آزاد خود بسیار نادر است و زمانی یک فلز گرانبها و ارزشمندتر از به حساب میآمد؛ بنابراین، بهعنوان فلزی صنعتی اخیراً مورد توجه قرار گرفته و در مقیاسهای تجاری تنها بیش از ۱۰۰۰ سال است که مورد استفادهاست. در ابتدا که این فلز کشف شد، جدا کردن آن از سنگها بسیار مشکل بود و چون کل آلومینیوم زمین بصورت ترکیب بود، مشکلترین فلز از نظر تهیه به شمار میآمد.
آلومینیوم در قرن نوزدهم برای مدتی از با ارزشتر بود، اما بعد از ابداع یک روش آسان برای استخراج آن در سال ۱۸۸۹، قیمت آن رو به کاهش گذاشت و سقوط کرد. تهیه مجدد این فلز از قطعات اسقاط (از طریق بازیافت) تبدیل به بخش مهمی از صنعت آلومینیوم شد. بازیافت آلومینیوم موضوع تازهای نیست، بلکه از یک روش رایج برای این کار وجود داشت. با اینهمه تا اواخر دهه ۶۰۰ این یک کار کم منفعت بود تا زمانیکه بازیافت قوطیهای آلومینیومی آشامیدنیها بالاخره بازیافت این فلز را مورد توجه قرار داد. منابع بازیافت آلومینیوم عبارتاند از: اتومبیلها، پنجرهها، درها، لوازم منزل، کانتینرها و سایر محصولات. یکی از ویژگیهای مهم آلومینیوم که بازیافت آن را مورد توجه قرار میدهد آن است که هیچ تفاوتی بین کیفیت آلومینیوم بازیافتی و آلومینیوم تازه تولید شده وجود ندارد.
معرفی
آلومینیوم، است که در دارای علامت Al و ۱۳ میباشد. آلومینیوم که عنصری نقرهای و انعطافپذیر است، عمدتاً به صورت بوکسیت یافت میشود و از نظر مقاومتی که در برابر اکسیداسیون دارد، همچنین وزن و قدرت آن، قابل توجهاست. آلومینیوم در صنعت برای تولید میلیونها محصول مختلف بکار میرود و در جهان اقتصاد، عنصر بسیار مهمی است.
اجزای سازههایی که از آلومینیوم ساخته میشوند، در صنعت هوانوردی و سایر مراحل حمل و نقل بسیار مهم هستند. همچنین در سازههایی که در آنها وزن پایداری و مقاومت لازم هستند، وجود این عنصر اهمیت زیادی دارد.
ویژگیهای قابل توجه
آلومینیوم، فلزی نرم و سبک، اما قوی است، با ظاهری نقرهای - خاکستری مات و لایه نازک اکسایش که در اثر برخورد با هوا در سطح آن تشکیل میشود، از زنگ خوردگی بی. ِ چکش خوار، انعطافپذیر و به راحتی خم میشود. همچنین بسیار بادَوام و مقاوم در برابر زنگ خوردگی است. بعلاوه، این عنصر غیر مغناطیسی، بدون جرقه، دومین فلز و ششمین فلز انعطافپذیر است.
کاربردها
چه از نظر کیفیت و چه از نظر ارزش، آلومینیوم کاربردیترین فلز بعد از است و تقریبأ در تمامی بخشهای صنعت دارای اهمیت میباشد. آلومینیوم خالص، نرم و ضعیف است، اما میتواند آلیاژهایی را با مقادیر کمی از ، ، ، و دیگر عناصر بوجود آورد که این آلیاژها ویژگیهای مفید گوناگونی دارند. این آلیاژها اجزای مهم و راکتها را میسازند.
وقتی آلومینیوم را در خلاء تبخیر کنند، پوششی تشکیل میدهد که هم و هم گرمای تابشی را منعکس میکند. این پوششها لایه نازک اکسید آلومینیوم محافظ را بوجود میآورند که همانند پوششهای نقره خاصیت خود را از دست نمیدهند. یکی دیگر از موارد استفاده از این فلز در لایه آینههای تلسکوپهای نجومی است.
فهرست کاربردها
برخی از کاربردهای فراوان آلومینیوم عبارتاند از:
(اتومبیلها، هواپیماها، کامیونها، کشتیها، ناوگانهای دریایی، و…)
بستهبندی (قوطیها، فویل و…)
ساختمان (درب، پنجره، دیوار پوشها و…)
کالاهای با دوام مصرفکننده (وسایل برقی خانگی، وسایل آشپزخانه،...)
خطوط انتقال الکتریکی (هدایت الکتریکی آلومینیوم از مس بیشتر واز طلا کمتر میباشد اما استحکام مکانیکی ان در برابر کشش از مس کمتر میباشد و لذا برای ساخت هادیهای آلومینیوم به منظور استفاده در خطوط انتقال از فولادی برای تقویت استحکام ان در برابر کشش استفاده میکنند معروفترین هادی آلومینیومی با ویژگیهای بالا که در ۹۰ درصد خطوط انتقال استفاده میشود هادی ACSR میباشد.
ماشین آلات (آلومینا) بطور طبیعی و بصورت ، ، و یافت میشود که در صنعت شیشهسازی کاربرد دارد. یاقوت و یاقوت کبود مصنوعی در لیزر برای همنوسان بکار میروند. آلومینیوم با انرژی زیادی اکسیده میشود و در نتیجه در سوخت موشکهای با سوخت و دمازاها مورد استفاده واقع میشود.
استخراج آلومینیوم
آلومینیوم یک فلز واکنشگر است و نمیتواند از سنگ معدن خود بوکسیت (Al۲O۳) بهوسیله کاهش با جدا شود. در عوض روش جداسازی این فلز از طریق است. (این فلز در محلول اکسیده شده، سپس بصورت فلز خالص جدا میشود) لذا جهت این کار، سنگ معدن باید درون یک مایع قرار بگیرد. اما دارای نقطه ذوب بالایی است (۲۰۰۰۰ درجه سانتیگراد) که تأمین این مقدار انرژی از نظر اقتصادی مقرون به صرفه نیست.
برای سالهای زیادی بوکسیت را در فلورید سدیم و آلومینیوم مذاب قرار میدادند و نقطه ذوب آن تا ۹۰۰درجه سانتیگراد کاهش مییافت. اما امروزه مخلوط مصنوعی ازآلومینیوم، سدیم و، جایگزین و آلومینیوم شدهاست. این فرایند هنوز مستلزم انرژی بسیار زیاد است و کارخانجات آلومینیوم دارای ایستگاههای برق مخصوص خود در اطراف این کارخانهها هستند.
الکترودهایی که در الکترولیز بوکسیت بکار میروند، هر دو کربن هستند. وقتی سنگ معدن در حالت مذاب است، یونهای آن آزادانه حرکت میکنند. واکنش در کاتد منفی اینگونهاست:
در اینجا یون آلومینیوم در حالت کاهش است (الکترونها اضافه میشوند). سپس فلز آلومینیوم به سمت پایین فرومیرود و خارج میشود.
آند مثبت، اکسیژن بوکسیت را اکسیده میکند که بعد از آن با الکترود کربنی واکنش کرده تا تولید نماید.
این کاتد باید عوض شود، چون اغلب تبدیل به دیاکسید کربن میشود. بر خلاف هزینه الکترولیز، آلومینیوم فلزی، ارزان با کاربرد وسیع است. امروزه آلومینیوم را میتوان از خاکه معدنی استخراج کرد، اما این فرایند، اقتصادی نیست.
ایزوتوپها
آلومینیوم، دارای ۹ است که عمدهترین آنها بین ۲۳ تا ۳۰ مرتب شدهاند. تنها Al-۲۷ (ایزوتوپ پایدار) و Al-۲۶ (ایزوتوپ رادیواکتیو) بطور طبیعی وجود دارند. Al-۲۶۶ از پراشیدن ذرات اتم آرگون در اتمسفر که در نتیجه پروتونهای اشعه کیهانی رخ میدهد، تولید میشود. ایزوتوپهای آلومینیوم، کاربردهای عملی در تعیین قدمت رسوبات دریایی، خاستگاه منگنز، یخهای دوران یخبندان، کوارتز در صخرهها و شهاب سنگها دارد.
Al-۲۶ اولین بار در مطالعات ماه و شهابسنگها بکار رفت. اجزاء شهابسنگها بعد از جدا شدن از پیکره مادر در مدت سفر خود در فضا در معرض شدید بمباران اشعه کیهانی هستند که باعث تولید آلومینیوم ۲۷ پایدار میشود. بعد از سقوط روی زمین، حفاظ اتمسفر مانع از تولید Al-۲۶ بیشتر از قطعات شهابسنگها میشود و واپاشی آن در تعیین عمر زمینی آنها مؤثر است. تحقیقات روی شهابسنگها ثابت کردهاست که Al-۲۶ در زمان شکلگیری سیاره ما نسبتاً به مقدار فراوان وجود داشتهاست. احتمالاً شده در نتیجه واپاشی Al-۲۶۶، ذوب شدن مجدد و جدایی سیارکها بعد از شکل گیری آنها را ۲–۴۴ میلیارد سال پیش در پی داشتهاست.
هشدارها
آلومینیوم یکی از معدود عناصر فراوانی است که ظاهراً هیچ فعالیت مؤثری در سلولهای زنده ندارد. اما درصد کمی از مردم به آن حساسیت دارند. آنها تجربه کردهاند تماس هر نوع از آن موجب التهاب پوستی میشود. مصرف داروهای بند آورنده خون و مواد ضد عرق باعث ایجاد جوشهای خارش آور و میگردد. عدم جذب مفید از غذاهای پخته شده در ظروف آلومینیومی همچنین تهوع و سایر علائم مسمومیت در نتیجه خوردن اینگونه محصولات مانند Maalox، Amphojel، Kaopectatee.
در سایر افراد آلومینیوم مانند فلزات سنگین، سمی نیست، اما در صورت مصرف زیاد علائمی از مسمومیت دیده شدهاست. اگرچه استفاده از ظروف غذای آلومینیومی به خاطر مقاومت در برابر زنگزدگی و خاصیت بالای آنها بسیار رایج است، در کل، هیچگونه علامتی در مورد ایجاد مسمومیت آنها دیده نشدهاست. مصرف زیاد داروهای ضد اسید و مواد ضد عرق که حاوی ترکیبات آلومینیومی هستند، احتمال مسمومیت بیشتری دارند. بعلاوه احتمال ارتباط آلومینیوم با مطرح شدهاست، گرچه اخیراً این فرضیه رد شدهاست. مصرف زیاد این عنصر باعث نیز میگردد.
املای انگلیسی
املاء رسمی این عنصر در ، IUPAK) Aluminium) است، گرچه عموماً آمریکاییها و کاناداییها آنرا بصورت Aluminum نوشته و تلفظ میکنند. «همفری دیوی» در سال۱۸۰۷ Alumim را برای عنصر کشف شده در آن زمان ارائه کرد، اما بعداً تصمیم گرفت تا این نام را به Aluminum تغییر دهد که با وجود ium در نام بیشتر عناصر تطبیق کند. بعدها املا Aluminium در بریتانیا و آمریکا متداول شد، اما بعد بتدریج آمریکاییها برای اهداف غیرتخصصی این نام را به Aluminum برگرداندند. نام رسمی این عنصر در آمریکا و در رشته شیمی تا سال ۱۹۲۶ بصورت Aluminium بکار رفت. از این تاریخ به بعد تصمیم به استفاده از املاء Aluminumm در نشریات خود گرفت.
مکانیزم تشکیل لایه اکسیدی در آلومینیوم
مکانیزم تشکیل لایه اکسیدی در آلومینیوم حمام به غلظت ۱۰٪ حجمی را مد نظر داشته و در آن یک قطعه آلومینیومی را به قطب مثبت منبع الکتریسیته متصل کنید و فلز مناسب دیگری مانند قلع را به عنوان کاتد به قطب منفی منبع الکتریسیته وصل کنید دانسیته مورد نیاز در این پروسه حدود ۱ تا ۱/۶ آمپر بر دسیمتر مربع که از پتانسیلی حدود ۱۳ تا ۱۷۷ ولت به وجود میآید. در دمای معمولی اتاق وقتی که برقرار میشود اسید سولفریک آغاز به تجزیه میکند و در اثر این فعل و انفعلات در قطب منفی هیدروژن به وجود میآید و به موازات یونهای اکسیژن و سولفات توسط قطب مثبت که آلومینیوم به آن وصل است جذب میگردند.
شارژ الکتریکی در داخل سیستم فوق باعث میشود که یونهای مثبت آلومینیوم به سمت کاتد هدایت میشود و در همان حال درسطح آند کاتیونها یا آلومینیوم با آنیونهای اکسیژن ترکیب میشود و تشکیل اکسید آلومینیوم را میدهند. مقداری از یونهای آلومینیوم نیز قادر به ترکیب با اکسیژن نیست وبه صورت نا محلول در الکترولیت باقی میمانند. (فلز آلومینیوم خالص با اکسیژن واکنش میدهد روی آن یک لایه آلومینیوم اکیسد نقش میبندد. لایهٔ پایدار آلومینیوم اکسید مانع از رسیدن اکسیژن و رطوبت به نواحی زیرین آلومینیوم را از خوردگی نجات میدهد)
آندایزینگ
آندایزینگ آلومینیوم به روش الکترولیت اسید سولفوریک از اسید سولفوریک با غلظتهای مختلف gr/lit۱۰ تاgr/lit۷۰۰درصنایع و عملیات آندایزینگ استفاده میکنند. اما اکثر غلظتی که به طور معمول به کار ۱۵۰ تا ۲۵۰۰ گرم در لیتر میباشد. با تغییر غلظت میزان هدایت الکتریکی نیز تغییر میکند که منحنی شکل زیر بیانگر این ارتباط است. بیشترین قابلیت هدایت الکتریکی در غلظت ۳۵۰۰ گرم در لیتر یا ۳۵٪ وزنی اسید سولفوریک بدست میآید. در چنین حالتی ولتاژ مورد نیاز جهت ایجاد دانسیته ۱/۲ آمپر بر دسیمتر مربع کمترین مقدار خود را خواهد داشت و انرژی مصرف شده الکتریکی نیز به همان نسبت در پایینترین حد خود است. ارتباط بین دمای محلول الکترولیت غلظت اسید و ولتاژ مورد نیاز جهت اعمال دانسیته ۱/۲ آمپربر دسیمتر مربع است. آلومینیوم مورد آزمایش به صورت ورق بوده و درجه خلوص آن نیز ۹۹/۹۹درصد است. تجزیه وآزمایش بیانگراین نکته می باشدکه متناسب باافزایش غلظت محلول الکترولیت به نسبتی که زمان عملیات آندایزینگ افزایش ضخامت و وزن لایه اکسیدی حاصل کاهش مییابد بطوری که اگر قطعهای آلومینیومی در محلول اسید سولفوریک با غلظت ۳۰٪ وزنی۳۳۰ گرم در لیتر در طول مدت یک ساعت آندایز شود وزن لایه اکسیدی ان معادل نصف حالتی خواهدبود که غلظت الکترولیت ۱۵٪وزنی ویا ۱۶۵گرم در لیتر بوده ودر همان مدت زمان آندایز شده باشد.
آلیاژهای کار شده آلومینیم
1xxx
آلومینیم با خلوص ۹۹٫۰۰ درصد یا بالاتر
2xxx
مس، اصلی تر ین عنصر در آلیاژهای سری 2xxx است.
3xxx
منگنز، اصلی تر ین عنصر ناخالصی در آلیاژهای سری 3xxx است.
4xxx
سیلیسیم، اصلی تر ین عنصرناخالصی در آلیاژهای سری 4xxx است.
5xxx
منیزیم، اصلی تر ین عنصرناخالصی در آلیاژهای سری 5xxx است.
6xxx
منیزیم و سیلیسیم، اصلی تر ین عنصرناخالصی در آلیاژهای سری 6xxx است.
7xxx
روی، با میزان ۱ تا ۸ درصد، اصلی تر ین عنصر آلیاژی در آلیاژهای سری 7xxx است.
wikipedia